First Semestral Exam 2019 B. Math. (Hons.) IInd year Algebra III Instructor — B. Sury November 13, 2019 Answer Any FIVE Questions.

Q 1.

(a) Let R be a possibly noncommutative ring with the property that xy = 0 implies x = 0 or y = 0. Let m, n be coprime positive integers and let $a, b \in R$ satisfy $a^m = b^m, a^n = b^n$. Prove a = b.

(b) Prove that the polynomial $X^{100} - 123123X^{28} + 110$ cannot take the values ± 33 over integers.

Q 2.

Determine all integer solutions of $x^2 + 2 = y^3$; you may assume that $\mathbb{Z}[\sqrt{-2}]$ is a UFD.

OR

Consider the integral domain $R = \mathbb{Z}[\sqrt{14}]$. Explain why the equality $2 \cdot 7 = \sqrt{14} \cdot \sqrt{14}$ does not contradict the fact that R is a unique factorization domain.

Q 3. Let *R* be a ring with unity and let *I* be a left ideal. Prove that $S = \{r \in R : Ir \subseteq I\}$ is a subring containing *I* as a 2-sided ideal. Further, show that the ring $End_R(R/I)$ of left *R*-module endomorphisms of R/I is isomorphic to the opposite of the ring S/I.

OR

If R is a (not necessarily commutative) ring with unity, then show that a left ideal I is a direct summand of R if and only if I = Re with e idempotent.

Q 4. Find abelian groups A, B, C such that there exists a surjection θ : $B \to C$ such that $Hom(A, B) \to Hom(A, C)$; $\alpha \mapsto \theta \circ \alpha$ is not surjective.

OR

Let R be a commutative ring with unity and let \mathbb{M} be a maximal ideal. For any positive integer n, prove that the ring R/\mathbb{M}^n has a unique maximal ideal and that every non-unit is nilpotent.

Q 5. Let *R* be a commutative ring with unity and *p* a prime such that $a^p = a$ for all $a \in R$. Prove that *R* is isomorphic to a subring of the direct product of copies of $\mathbb{Z}/p\mathbb{Z}$.

Hint. For any prime ideal P, prove that $R/P \cong \mathbb{Z}/p\mathbb{Z}$ and that Nil(R) = 0.

OR

If I, J are ideals satisfying I + J = R for a commutative ring R with unity, prove that $IJ = I \cap J$ and that the map

$$R/IJ \to R/I \times R/J; \ r+IJ \mapsto (r+I,r+J)$$

is an isomorphism of rings.

Deduce an isomorphism of rings $\mathbb{C}[X]/(X^3 - X) \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}$.

Q 6. If a group G is generated by symbols x_1, \dots, x_n and r defining relations $f_i = x_1^{a_{i1}} x_2^{a_{i2}} \cdots x_n^{a_{in}} = 1$ for $1 \leq i \leq r$, its abelianization G/[G,G] is the quotient of the free \mathbb{Z} -module with basis $\{x_1, \dots, x_n\}$ modulo the relation matrix $(a_{ij})_{i \leq r, j \leq n}$. Assuming that the group $SL(2,\mathbb{Z})$ is generated by x, y and defining relations $x^4 = 1 = y^6, x^2 = y^3$, determine the structure of the abelian group $SL(2,\mathbb{Z})/[SL(2,\mathbb{Z}), SL(2,\mathbb{Z})]$.

OR

Find the invariant factors in $\mathbb{Q}[X]$ corresponding to the 6×6 diagonal matrix diag(1, 1, 1, 2, 2, 3).